最佳答案法国数学家笛卡尔的故事 1、突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。 2、牛顿的童年是不幸的,出世前三个月爸爸就去......
法国数学家笛卡尔的故事
1、突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。
2、牛顿的童年是不幸的,出世前三个月爸爸就去世了。两岁时,妈妈又改嫁到邻村。牛顿只好与外婆相依为命。他从不乱花钱,唯一的爱好就是搞一些小工艺,把零用钱聚起来,买了锯子、钉锤等一类工具,一放学就躲在房子里敲敲打打。
3、意志、悟性、想象力以及感觉上的一切作用,全由思维而来。(法国数学家笛卡尔的故事)。
4、“老师,我没有胡闹”。数学家的故事篇2伽罗瓦(varisteGalois),19世纪最伟大的法国数学家之唯一被我称为“天才数学家”的人。他16岁时就参加了巴黎综合理工学院的入学考试,结果面试时因为解题步骤跳跃太大,搞得考官们不知所云,最后没能通过考试。
5、国王看不懂,以为这个方程里隐藏着两个人不可告人的秘密,便把全城的数学家召集到皇宫,但是没有人能解开这个函数式。他不忍看着心爱的女儿每天闷闷不乐,便把这封信给了她。
6、小伙子是在英国留学的,口才真棒,通俗易懂,而且很有幽默感!
7、1649年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。几天后,他意外的接到通知,国王聘请他做小公主的数学老师。从此,他当上了小公主的数学老师。
8、其实高斯上大学靠的还是别人的资助,他的家庭不好,他的父亲一度想让高斯辍学去当一个园丁,是他的舅舅竭力阻拦并拿出自己的全部积蓄供高斯上学,之后,14岁的高斯又遇见了法国一位公爵,这位慷慨的公爵资助高斯读完了所有的课程。
9、他把这一研究成果提交给了法国科学院,由大数学家柯西(Augustin-LouisCauchy)负责审稿;然而,柯西建议他回去仔细润色一下(此前一直认为柯西把论文弄丢了或者私藏起来,最近的法国科学院档案研究才让柯西平反昭雪)。
10、而笛卡尔和这位克里斯蒂娜的确有过交情,只不过,笛卡尔不是被流放到瑞典与她邂逅,而是于1649年10月4日,笛卡尔应克里斯蒂娜的邀请来到瑞典,并且当时的克里斯蒂娜已经是瑞典的女王了。(法国数学家笛卡尔的故事)。
11、15岁时,就以获得金奖章的优异成绩从中学毕业。她的父亲早先曾在圣彼得堡大学攻读过物理学,父亲对科学知识如饥似渴的精神和强烈的事业心,也深深地熏陶着小玛丽。她从小就十分喜爱父亲实验室中的各种仪器,长大后她又读了许多自然科学方面的书籍,更使她充满幻想,她急切地渴望到科学世界探索。
12、 这期间有几次经历对他产生了重大的影响。一次,笛卡儿在街上散步,偶然间看到了一张数学题悬赏的启事。两天后,笛卡儿竟然把那个问题解答出来了,引起了著名学者皮克曼的注意。皮克曼向笛卡儿介绍了数学的最新发展,给了他许多有待研究的问题。
13、 在荷兰长达20多年的时间里,笛卡尔对哲学、数学、天文学、物理学、化学和生理学等领域进行了深入的研究,并通过数学家梅森神父与欧洲主要学者保持密切联系。他的主要著作几乎都是在荷兰完成的。
14、牛顿学习时精神很专注。有一次煮鸡蛋,心里想着数学公式,竟误把手表当作鸡蛋丢进了锅里。还有一次,从早晨起就计算一个问题,中饭都忘了吃。当他感到肚子饿时,已暮色苍茫。他步出书房,一阵清风,感到异常的清新。
15、有了数对,就能很容易的表示出某一点的位置。
16、另一种常见的生成心形曲线的方法是把一条过原点的螺线(0,p)的部分关于y轴对称,如Iamds同学在M67大牛的博文回复中提到的:
17、居里夫人是法国籍波兰科学家,研究放射性现象,一生两度获诺贝尔奖。玛丽从小学习就非常勤奋刻苦,对学习有着强烈的兴趣和特殊的爱好,从不轻易放过任何学习的机会,处处表现出一种顽强的进取精神。从上小学开始,她每门功课都考第一。
18、国王找遍了全城的数学家来破解,但都无人解的出来,最后,放松警惕的他终于将这封信交给了公主。曾在笛卡尔教导下的她很快解出了答案,望着眼前一颗代表着笛卡尔心意的新型曲线,她心都碎了。
19、在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。此时,被软禁在宫中的小公主依然徘徊在皇宫的走廊里,思念着远方的情人。
20、还有一个关于数学家高斯的故事,当时高斯在上小学,而老师在教给同学们方程之后就想看一看同学们的学习水平,特意出了一道大学生才能算出来的题目写在黑板上,毫无疑问高斯又是全班第一个算出来的,并且他的答案准确无误,当时他的老师对这个孩子刮目相看,特意从大城市买了一本最好的算术书送给高斯,对当时还很小的高斯说你的数学水平已经超过了我,我已经没有东西可以教你了。
21、笛卡尔出生于法国都伦的拉哈耶,贵族家庭的后裔,父亲是个律师。他早年受教于拉福累歇的耶稣会学校。1612年赴巴黎从事研究,曾于1617年和1619年两次从军,离开军营后旅行于欧洲,他的学术研究是在军旅和旅行中作出的。
22、 笛卡儿在《哲学原理》第二章中以第一和第二自然定律的形式比较完整地第一次表述了惯性定律:只要物体开始运动,就将继续以同一速度并沿着同一直线方向运动,直到遇到某种外来原因造成的阻碍或偏离为止。这里他强调了伽利略没有明确表述的惯性运动的直线性。
23、勒内·笛卡尔1596年3月31日生于法国安德尔-卢瓦尔省的图赖讷(现笛卡尔,因笛卡儿得名),1650年2月11日逝世于瑞典斯德哥尔摩,是世界著名的法国哲学家、数学家、物理学家。他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者且提出了"普遍怀疑"的主张。黑格尔称他为"现代哲学之父"。他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓"欧陆理性主义"哲学。堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之被誉为"近代科学的始祖"。
24、每天顶着凛冽寒风到炉火熊熊的宫殿里上课,上完课再顶着凛冽寒风回家的笛卡尔很快感冒了,这感冒又发展成了肺病。
25、在物理学方面,笛卡尔也有所建树。他在中首次对光的折射定律提出了理论论证。他还解释了人的视力失常的原因,并设计了矫正视力的透镜。力学上笛卡尔则发展了伽利略运动相对性的理论,强调了惯性运动的直线性。笛卡尔发现了动量守恒原理。他还发展了宇宙演化论、漩涡说等理论学说,虽然具体理论有许多缺陷,但依然对以后的自然科学家产生了影响。
26、那么笛卡尔与女王之间是不是真有什么不可告人的秘密呢?
27、凌晨,想着这只悬在半空中的蜘蛛,沉思中的笛卡儿豁然开朗:能不能用两面墙的交线及墙与天花板的交线,来确定它的空间位置呢?他一骨碌从床上爬起来,在纸上画了三条互相垂直的直线,分别表示两墙面的交线和墙与天花板的交线,用一个点表示空间的蜘蛛,当然可以测出这点到三个平面的距离。这样,蜘蛛在空中的位置就可以准确地标出来了。
28、故事讲述了1650年午后,斯德哥尔摩的街头,52岁穷困潦倒的笛卡尔邂逅了18岁的公主克里斯蒂娜。和那些只知道漂亮裙子、华丽舞会的公主不同,她对数学超级感兴趣。看到笛卡尔埋头苦算的数学难题,不顾30岁的高年龄差,拜倒在了他的“牛仔裤”下。
29、但是公正地说,文中有一点是正确的,就是克里斯汀的确是传说中的天才少女,她马术精湛,擅长剑击和射击,精通法语希腊语拉丁语,对哲学颇有研究……
30、“有了”他忍不住叫了起来,“用两个数不就可以将点的位置确定下来了嘛!”于是,经过思考,笛卡儿最终发明了数对!为了更直观地表示,笛卡儿还吧蜘蛛网化简成网格,也就是我们学习的平面坐标系了。他本人也受到了人们永远的尊敬。
31、几天后,他意外地接到通知,国王聘请他做小公主的数学老师。满心疑惑的笛卡尔跟随前来通知的侍卫一起来到皇宫,在会客厅等候的时候,他听到了从远处传来的银铃般的笑声。转过身,他看到了前儿天在街头偶遇的女孩子。慌忙中,他赶紧低头行礼。
32、☞分享数学,常识和运气——投资大师詹姆斯·西蒙斯2010年在MIT的讲座
33、笛卡尔对数学最重要的贡献是创立了解析几何。笛卡尔成功地将当时完全分开的代数和几何学联系到了一起。在他的著作中,笛卡尔向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。笛卡儿引入了坐标系以及线段的运算概念。笛卡尔在数学上的成就为后人在微积分上的工作提供了坚实的基础,而后者又是现代数学的重要基石。此外,现在使用的许多数学符号都是笛卡尔最先使用的,这包括了已知数a,b,c以及未知数x,y,z等,还有指数的表示方法。他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。
34、在海德堡大学求学的过程中,索菲·科瓦列夫斯卡娅为了取得更大的进步,到被誉为“现代分析之父”的数学大师魏尔斯特拉斯教授家中拜师求教。这位数学大师被索菲·科瓦列夫斯卡娅的诚恳态度打动,经过多次测试,满意地收下了这位勤奋好学的女学生。在魏尔斯特拉斯的悉心指导下,索菲·科瓦列夫斯卡娅更加刻苦地钻研数学。经过一段时间的学习与实践,索菲·科瓦列夫斯卡娅写就了三篇重要的数学学术论文,不久,又成功地解决了困扰数学家们一百多年的“数学水妖”问题,并因此获得了著名的“鲍廷奖金”。
35、 笛卡儿是欧洲近代哲学的奠基人之黑格尔称他为“现代哲学之父”。他自成体系,熔唯物主义与唯心主义于一炉,在哲学史上产生了深远的影响。
36、根据上面的记述,1650年的时候克里斯汀公主已经在王位上坐了18年了,事实上克里斯汀生于1626年,1632年她老爹阵亡的时候以假定继承人的身份继承了王位。
37、公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。笛卡尔向她介绍了他研究的新领域——直角坐标系。
38、格罗腾迪克在代数几何学方面的贡献博大精深,大致可以分为10个方面。他和其他人合作出版十几部巨著,共1万页以上,成为代数几何学的圣经。
39、在一次数学聚会上,一位叫做爱丝特·克莱恩的女同学提出了这么一个结论:在平面上随便画五个点(其中任意三点不共线),那么一定有四个点,它们构成一个凸四边形。塞凯赖什等人想了好一会儿,没想到该怎么证明。
40、总体来说,爱因斯坦成绩在高中时就非常突出,而且是文理俱佳。后来,他凭借优异成绩进入瑞士顶级学府苏黎世联邦理工学院。
41、 在笛卡儿所处的时代,代数还是一门比较新的科学,几何学的思维还在数学家的头脑中占有统治地位。1637年,笛卡儿发表了《几何学》,它确定了笛卡儿在数学史上的地位。
42、数学家高斯的故事还包括一个他给父亲发薪水的故事,高斯的父亲是一个泥瓦匠,每个星期六他总要在晚上给工人发薪水,当时小高斯只有3岁,他看着爸爸计算工人的工资,在爸爸把一沓钱给工人的时候,高斯突然站起来说爸爸你弄错了,然后他说了一个另外的数目,当时很多工人和他的爸爸都不相信,认为这是小孩子的恶作剧,但是当大人重新算一遍的时候发现小高斯竟然是对的。
43、 1649年,笛卡尔接受了瑞典女王克里斯蒂的慷慨之邀,来到斯德哥尔摩做她的私人教师。笛卡尔喜欢温暖的卧室,总是习惯晚些起床。当他得知女王让他清早五点钟去上课,他深感焦虑不安。笛卡尔担心早上五点钟那刺骨的寒风会要了他的命。果然不出所料,他很快就患了肺炎,1650年2月,在他达瑞典仅四个月后,被病魔夺去了生命。
44、和女孩道别后,笛卡尔渐渐忘却了这件事,依旧每天坐在街头写写画画。
45、要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。
46、52岁的笛卡尔邂逅了18岁瑞典公主克莉丝汀,笛卡尔落魄无比、穷困潦倒,又不愿意请求别人的施舍,每天只是拿着破笔破纸研究数学题。
47、那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。生性清高的笛卡尔从来不开口请求路人施舍,他只是默默地低头在纸上写写画画,潜心于他的数学世界。
48、在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,她对曲线着了迷。每天的形影不离也使他们彼此产生了爱慕之心。
49、 笛卡儿在其他的科学领域还有不少值得称道的创见。他还提出了刺激反应说,为生理学做出了一定的贡献。
50、迄今为止,格罗腾迪克的著述中还有很多思想未被完全了解,但已经产生许多大结果。1984年,格罗腾迪克的手稿《纲领草案》在部分数学家中流传,1994年正式发表,其内容尚有待发掘,1988年瑞典科学院授予他克拉福德奖,他拒绝领取,并痛斥当前的学术界腐败。不过,现在仍有许多同事和学生继续他的工作。数学家的故事篇6高斯数学家的故事
51、在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。此时,被软禁在宫中的小公主依然徘徊在皇宫的走廊里,思念着远方的情人。
52、突然,有人来到他旁边,拍了拍他的肩膀,“你在干什么呢?”扭过头,笛卡尔看到一张年轻秀丽的睑庞,一双清澈的眼睛如湛蓝的湖水,楚楚动人,长长的睫毛一眨一眨的,期待着他的回应。
53、1619年,笛卡儿在多瑙河德国南部的一座小城——诺伊堡的军营。这是他一生的转折点,他终日沉迷在深思中,考虑数学和哲学问题。
54、坐标方法在日常生活中用得很多。例如象棋、国际象棋中棋子的定位;电影院、剧院、体育馆的看台、火车车厢的座位及高层建筑的房间编号等都用到坐标的概念。
55、有一天,笛卡尔(1596—16法国哲学家、数学家、物理学家)生病卧床,但他头脑一直没有休息,在反复思考一个问题:几何图形是直观的,而代数方程则比较抽象,能不能用几何图形来表示方程呢?这里,关键是如何把组成几何的图形的点和满足方程的每一组“数”挂上钩。他就拼命琢磨。通过什么样的办法、才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会儿,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”,使笛卡尔思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置,不是都可以用这三根数轴上找到的有顺序的三个数来表示吗?反过来,任意给一组三个有顺序的数,例如也可以用空间中的一个点P来表示它们。同样,用一组数(a,b)可以表示平面上的一个点,平面上的一个点也可以用一组二个有顺序的数来表示。于是在蜘蛛的启示下,笛卡尔创建了直角坐标系。无论这个传说的可靠性如何,有一点是可以肯定的,就是笛卡尔是个勤于思考的人。这个有趣的传说,就象瓦特看到蒸汽冲起开水壶盖发明了蒸汽机一样,说明笛卡尔在创建直角坐标系的过程中,很可能是受到周围一些事物的启发,触发了灵感。
56、伽罗瓦(Galois),19世纪最伟大的法国数学家之一。他16岁时就参加了巴黎综合理工学院的入学考试,结果面试时因为解题步骤跳跃太大,搞得考官们不知所云,最后没能通过考试。
57、从1616年到1628年,笛卡尔做了广泛的游历。他曾在三个军队中(荷兰、巴伐利亚和匈牙利)短期服役,但从未参加任何战斗。观光过意大利、波兰、丹麦及其它许多国家。在这些年间,系统陈述了所发现真理的一般方法。五十二岁时,决定用此方法将世界做个综合性的描述。1629年写了一书,概述了他的方法。在1630年到1634年期间,笛卡尔运用自己的方法研究科学。为了能学到更多的解剖学和生理学知识,亲自做解剖。在光学、气象学、数学及其他几个学科领域内都独立从事过重要研究。
58、在瑞典这个浪漫的国度里,一段纯粹、美好的爱情悄然萌发。
59、因为一些极端的政治行动,伽罗瓦被捕入狱。即使在监狱里,他也不断地发展自己的数学理论。他在狱中结识了一名医生的女儿,并很快坠入爱河;但好景不长,两人的感情很快破裂。出狱后的第二个月,伽罗瓦决定替自己心爱的女孩与女孩的一个政敌进行决斗,不幸中枪,第二天便在医院里死亡。伽罗瓦死前的最后一句话是对他的哥哥艾尔弗雷德(Alfred)说的:“不要哭,我需要足够的勇气在20岁死去。”
60、它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。
61、生性清高的笛卡尔从来不开口请求路人施舍,他只是默默地低头在纸上写写画画,潜心于他的数学世界。
62、 y=a*(2*sin(t)-sin(2*t))
63、 在卷三中,笛卡儿指出,方程可能有和它的次数一样多的根,还提出了著名的笛卡儿符号法则:方程正根的最多个数等于其系数变号的次数;其负根的最多个数(他称为假根)等于符号不变的次数。笛卡儿还改进了韦达创造的符号系统,用a,b,c,…表示已知量,用x,y,z,…表示未知量。
64、笛卡尔对数学最重要的贡献是创立了解析几何。笛卡尔成功地将当时完全分开的代数和几何学联系到了一起。在他的著作中,笛卡尔向世人证明,几何问题可以归结成代数问题,也可以通过代数转换来发现、证明几何性质。笛卡儿引入了坐标系以及线段的运算概念。笛卡尔在数学上的成就为后人在微积分上的工作提供了坚实的基础,而后者又是现代数学的重要基石。此外,现在使用的许多数学符号都是笛卡尔最先使用的,这包括了已知数a,b,c以及未知数x,y,z等,还有指数的表示方法。他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。
65、国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开。
66、埃尔德什把这个问题命名为了“幸福结局问题”,因为这个问题让乔治·塞凯赖什和女同学爱丝特·克莱恩之间迸出了火花,两人越走越近,最终在1937年6月13日结了婚。