数学的由来精品好句78句

admin 59次浏览

最佳答案数学的由来 1、春秋战国时代,中国正经历着由奴隶社会到封建社会的巨大变革,学术思想十分活跃.这一时期形成的诸子百家,对科学文化影响极大。数学园地更是生机盎然,朝气勃......

数学的由来

1、春秋战国时代,中国正经历着由奴隶社会到封建社会的巨大变革,学术思想十分活跃.这一时期形成的诸子百家,对科学文化影响极大。数学园地更是生机盎然,朝气勃勃。

2、                           (数学的由来)。

3、——著名科学史家、中国科学院自然科学史研究所

4、而进一步的发展,问题又出来了。数字太大了也没法刻,几百上千的,恐怕把所有动物骨头拿来都不够刻,费财又费力,那么自然就想到用一些简化后的记号来表示大一点的数。这就牵扯到进制的问题了,因为这样可以减少符号数,由于人有十根手指和十根脚趾头的缘故,十进制最终成为主流。但其间也出现过五进制、二进制、六十进制等不同的进制法,后来由于语言等方面的原因,十进制最终打败其他进制。不过也没有完全消除,比如六十进制在角度时间方面的继续存在。至于其中的详细过程,也许我们只能猜测,本人才疏学浅,这本书也无多大介绍。

5、有解而引入了虚数i。但在历史中,复数是在一些数学家求解三次方程的过程中,发现结果中会出现对负数的开方,于是这个时候提出了虚数。可以说,复数正是在代数方程的求解中产生的。在古希腊时期,丢番图的《算数》中就已经记载了一元二次方程在时的情形,但当时丢番图没有考虑这种方程是否有解。直到16世纪,四次方程的求解中才出现了复数。意大利学者卡尔丹在塔塔利亚的基础上推出了一般三次方程的解法。但在求解的过程中,出现了不可约的情形,这时负数会被开方。然而这是当时的欧洲人无法接受的,因为负数的出现本身就难以接受了(欧洲人为什么难以接受负数,这也是一个与社会学文化学相关的有意思的问题),更别说给负数开方。之后,又有意大利数学家邦贝利引入了复数,但他本人觉得复数是神秘而无用的东西。法国数学家笛卡尔也将困惑数学家的“虚无缥缈”的东西命名为“虚数”。(数学的由来)。

6、对于原始人来说,除了1和2这样的数字,更多的数可能难以理解,于是就用“一群”或“一堆”来形容。后来,他们学会了扳着自己的手指头数数。数着数着,他们突然发现手指是可以计数的啊。

7、越来越多的证据表明,人类似乎也是大自然的幸运儿,是唯一能穿越“数学丛林”的动物。但这种能力来自何方?为何会发展起来?发展起来是为了什么目的?……要回答这些问题,不仅涉及到神经科学的一些热门话题,还迫使我们不得不重新思考“什么是数学?”“数学是发现还是发明?”等有关数学本质的问题。

8、西方人由于首先接触到阿拉伯人使用过这些数据,便误以为是他们发明的,所以便将这些数字称为阿拉伯数字,造成了这一历史的误会。

9、  德国数学家莱布尼茨(G.W.Leibniz,1646---1716)发明二进制后不久,见到了传教士白晋(J.Bouvet,1656---1730)从中国寄去的八卦.莱布尼茨认为,八卦中蕴含着二进制思想,因此惊叹不已.实际上,若把“--”和“--”两种卦爻用1和0代替,八卦就可表示为

10、这个结果表明,教育和职业所养成的习惯,已经深深改变了数学家们思考数学时的思维方式。文化的影响之巨,由此可见一斑。

11、  ——《大学科普》执行主编、重庆大学高校科协理论研究中心主任靳萍

12、印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。

13、“科学的故事丛书”跨越了不同文化领域和不同历史时空,在自然、科学与文学之间架起了一座桥梁,为读者展现了一个五彩缤纷的世界,能有效地与读者进行心灵的沟通,对于科学爱好者欣赏文学、文学爱好者感悟科学都有很大的感染力,是奉献给读者的精神大餐。

14、ISBN978-7-03-053743-0

15、  莱布尼茨说八卦是“流传于宇宙的科学中最古老的纪念物”,这项发明“对于中国人民实在是值得庆幸的事情”,并因此产生对中国古代文明的崇敬,热烈地希望到中国来.由于种种原因,他未能如愿,便托人把自己亲手制造的手摇计算机送往中国,成为中、德关系史上的一段佳话.

16、要走路,必须要有方向和路标。最直观的路标就是日月星辰。白天是太阳,晚上是星星和月亮。古代人很早就学会了看天。他们越来越意识到,一些星星总是出现在天空的一定位置,沿着一定的方向缓慢地移动着。

17、在几何学方面,公元前五千年的古埃及前王朝时期即已出现用图画表示的几何图案。也有人声称,年代大约是公元前三千年的英格兰和苏格兰地区的巨石文化遗址中,也发现了融入几何观念的设计,包括圆形、椭圆形和毕达哥拉斯三元数。然而上述发现也全部有争议,而目前最早的无争议的数学史料当前依然是来自古巴比伦和古埃及史后的。

18、传到欧洲后,欧洲人非常喜爱这套方便适用的记数符号,尽管后来人们知道了事情的真相,但由于习惯了,就一直没有改正过来。

19、另外一个不容忽视的起源是——人类的好奇。也许看见太阳月亮那么圆,就想研究圆这种图形等,这种来自几何图形上所独有的美感,刺激了早期的人类,学夫子一直相信,好奇心是人类前进的主要动力。

20、有了有理数,我们再看无理数。无理数的产生也是很早的,但它被人们真正接受却是比较晚的。早在公元前470年左右的古希腊,毕达哥拉斯学派的学员希帕索斯发现边长为1的正方形对角线长度不能用整数之比的形式来表达,打破了毕达哥拉斯学派“任何数都可以写成两个整数之比”的信条。这个长度的值其实就是后来说的无理数,然而希帕索斯本人却因此被惊恐无比的毕达哥拉斯学派其他成员投入大海。随后,数学家们陷入了对这个问题的长期的争论中,这就是第一次数学危机。但是真理是掩盖不了的,毕达哥拉斯学派抹杀真理才是“无理”,人们为了纪念希帕索斯,把这样的量称作“无理数”,无理数最终还是被人们认识到并且影响了随后整个数学的发展。

21、虚数究竟是如何产生的?在中学的教科书中,出于中学知识所限,将其解释为为了让方程

22、公元7世纪,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度、西经非洲到西班牙的阿拉伯帝国。后来,这个伊斯兰帝国分裂成东、西两个国家。由于这两个国家的各代君主都奖励文化和艺术,所以两国的首都非常繁荣,特别繁荣的是东都——巴格达。

23、现在不是有很多“建模”比赛吗?为一个复杂过程,建立一个相对简单的数学模型,然后输入参数,看看不同情况下的运行结果。那么,菲力斯顿的话其实意思就是:任何形式的生命都需要通过对其生存的环境进行“建模”,才能发挥作用。

24、产生了这些东西之后就希望有一种描述,于是数学从这个时候开始产生,但是非常的粗浅。比如说,一个原始社会的一个群落或者一个山洞,这个山洞里面我们到底有多少个人、我们打死了几只猴子、几只野猪等等这些东西都需要计量。再比如,我们还需要研究位置关系:我们所居住的山洞跟某一个河流构成了怎样的位置关系,跟某一个岔路口构成怎样的位置关系,当时这些问题都需要前人来解决。同时,我们还要解决场所的大小问题。比如说,我们这个山洞它究竟有多大,它究竟能够容纳多少人等等,这都是问题。这些问题发生了,于是人类开始产生最基本的东西。比如说,最开始需要计量,于是产生了4等自然数。

25、公元500年前后,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位,起源于印度。

26、以心理学上反映心理量和物理量之间关系的韦伯-费希纳定律为例。这条定律说:我们辨别两个感觉差别的能力,随感觉强度的增加而减弱。比如用手提重物,你很容易区分1千克和2千克,但要辨别21千克和22千克,就不那么容易了。对于亮度、音量等的辨别能力也同样如此。

27、  规、矩是两种测绘工具.规即圆规,矩是直角拐尺,用来画直线形.商代甲骨文中已有规和矩的象形字,所以它们最迟在商代已经出现.春秋战国时期,这两种工具被普遍用于测量和几何作图.

28、  春秋战国时代,中国正经历着由奴隶社会到封建社会的巨大变革,学术思想十分活跃.这一时期形成的诸子百家,对科学文化影响极大.数学园地更是生机盎然,朝气勃勃.

29、  值得注意的是,人们在商代甲骨文和西周金文的基础上,逐渐懂得把字写在竹片(或木片)上,用绳子穿成册,这就是早期的书.写上字的竹片称为简,或竹简.春秋战国的大批数学成果,便是通过竹简流传下来的.

30、  《墨经》中讨论的几何概念可以看作数学理论研究在中国的最初尝试.《墨经》是以墨翟(约公元前490---前405)为首的墨家学派的著作,包括光学、力学、逻辑学、几何学等各方面问题.它试图把形式逻辑用于几何研究,这是该书的显著特色.在这一点上,它同欧几里得(Euclid,约公元前330—前275)《几何原本》相似,一些几何定义也与《原本》中的定义等价.下面略举几例:

31、已知最古老的数学工具是发现于斯威士兰莱邦博山的莱邦博骨,大约是公元前35,000年的遗物。它是一支狒狒的腓骨,上面被刻意切割出29个不同的缺口,使用计数妇女及跟踪妇女的月经周期。相似的史前遗物也在非洲和法国出土,大约有35,000至20,000年之久,都与量化时间有关。发现于尼罗河上源之一的爱德华湖西北岸伊香苟地区(位于刚果民主共和国东北部),或许有20000年甚至更久,则刻有三组一系列的条纹符号,每列和骨头等长。常见的解释是已知最早的质数序列,亦有认为是代表六个阴历月的纪录。学者彼得·鲁德曼否认素数序列的解释,他认为素数的概念只能出现在除法之后,而他认定除法是在公元前1000年后才出现的,因此在公元500年以前,素数是不太可能被理解的。他写道,“一个计数符号之类的东西为什么要展示2的倍数,10到20之间的素数,和一些几乎是10的倍数,这是没人尝试解释过的”。而根据学者亚历山大·马沙克(英语:AlexanderMarshack)的说法,这个骨头可能影响了随后埃及数学的发展。因为埃及算术就像这块骨头一样,也使用了2的倍数,然而,这也是有争议的。

32、我国盛产竹子,是世界上最善于利用竹子的国家。用竹子做计算工具,使我国古代数学带有许多和西方不同的特色。因此,“祘”由两个“示”字合成。

33、在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。

34、让我们自豪的是,尽管人类和其他动物的感官都有着同样的偏差,但人类已经发展出识别和纠正偏差的能力。最明显的是,我们发明了数:这是一种符号系统,它让我们立即判断出(21与22)和(1与2)差距是一样的。

35、我们最开始由于数量的需要,产生了数字。后来由于要解决位置的问题,产生了欧几里得平面几何。虽然中国人在古代并不知道欧几里得,但是中国人、希腊人和其他国家的人一样都需要解决这些实际问题。与算术的产生相仿,最初的几何知识则是源于人们对于形的直觉中萌发出来的,史前人大概首先是从自然界本身提取几何形式,在器皿制作、建筑设计及绘画装饰中加以呈现。据研究,不同地区几何的产生有不同的历史背景。古埃及几何学产生于尼罗河泛滥后土地的重新丈量,古印度的几何学的起源则与宗教实践密切相关,而古代中国几何学的起源更多的与天文观测相联系,由此,我们也可以发现几何学的出现离不开我们生产生活的需要。

36、  在中国,《周髀算经》是第一部记载勾股定理的书.该书云:“求邪(斜)至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,

37、由此,出现了一个不同的假说:我们与生俱来的不是“数觉”,而是“量觉”,即感知事物的量(如大小、强度等)的能力。

38、文化对数的认知影响之大,超乎我们的想象。以巴布亚新几内亚的Yupno人为例。他们的语言虽然并不原始,却连表示“一个比另一个大或小”的说法都没有。Yupno并不是唯一拥有不强调数的语言的人。一项对189种澳大利亚原住民语言的研究,发现其中四分之三的语言中没有表示大于3或4的数的词汇。

39、举个例子。当一头野牛注意到一头狮子在逼近时,它就会本能地调动一个叫“逃跑/战斗”的决策机制,根据自己对狮子块头、距离远近以及对自己力量的估计,决定是逃跑还是战斗。这个决策机制,从功能上说,可看作是一个数学模型,输入“狮子块头”“距离”“自己的力量”等参数,输出“逃跑”或“战斗”的结果。任何一项参数改变,都可能导致输出结果不同。

40、里,书中给出计算各圆径的一般法则:“欲知次衡径,倍而增内衡之径.二之以增内衡径,得三衡径.次衡放(仿)此.”这相当于给出通项公式

41、大约4000年前夏朝的建立,标志着中国进入了奴隶社会。随着社会的发展,商代出现了比较成熟的文字---甲骨文,西周则演变为金文,即刻在青铜器上的铭文。

42、西方人由于首先接触到阿拉伯人使用过这些数据,便误以为是他们发明的,所以便将这些数字称为阿拉伯数字,造成了这一历史的误会。

43、因此,人们开始越来越相信复数的产生在数学中是有着非常重要的意义的。

44、史前的人类就已尝试用自然的法则来衡量物质的多少、时间的长短等抽象的数量关系,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。

45、除了御寒的兽皮、狩猎的木棍、盛水的器皿(那时还没有陶器,使用的多是一些天然的东西),他们几乎没有别的财产,更没有私有财产。这么简单的生活,当然用不到多少数学知识,即使是简单的手指计数也很少用到。

46、科学是文化的重要组成部分,也是现代教育的核心内容和主要方法。丛书回顾反思古往今来著名的科学人物及其故事,追溯探究宇宙天体、自然演化和生命进化,给读者以知识的浇灌、文化的润泽、精神的滋养和情感的沟通,是教师和家长开展青少年科学教育的必备读本。

47、例如,在美国自然史博物馆保存有古代南美印加部落用来记事的绳结:在一根较粗的绳子上栓系涂有颜色的细绳,再在细绳上打着各种各样的结,不同颜色和结的位置、形状表示不同的事物和数目。这种记事方法在秘鲁高原一直盛行到19世纪,而日本的琉球岛居民还仍然保持着结绳记事的传统,足见结绳记事对于人类发展的重要意义。计数系的出现使数与数之间的书写运算成为可能,在此基础之上初等算术在几个古老文明地区发展起来了。

48、  或许这就是数学的意义,提出问题胜过解决问题,具备数学的思维,比拥有数学的结论更重要。

49、文化是什么时候把我们曾经的模糊本能(“量觉”)塑造成能精确识别数的能力(“精确的数量感”)的呢?确切时间目前还不清楚。人类处理数的最早证据来自南非莱邦博山脉的博德山洞。在那里,考古学家们发现了年龄为4万的有缺口的骨头,其中包括狒狒的腓骨,上面刻有29个痕迹。人类学家认为,这些痕迹表明,这块骨头类似原始人的“账目棒”,是用来辅助计数的。说明那个时候人类就已经学会有意识地用符号表达和操纵数目了。

50、  《墨经》中还有一条重要记载:“小故,有之不必然,无之必不然.大故,有之必然.”用现代语言说,大故是“充分条件”而小故则是“必要条件.”大故和小故的区分,在哲学史和数学史上都是十分重要的事件.

51、本文摘编自杨天林教授撰著的“科学的故事丛书”之《数学的故事》(杨天林著,郭园园审订)第一章。

52、  可惜的是,随着墨家的衰落,墨家数学理论在形成体系之前便夭折了.

53、大自然是一个复杂多变、险象环生的处所,栖息地的变化、掠食动物的袭击、食物的匮乏……一个有机体的生存取决于它感知周围环境的能力。但不管是野牛估量狮群的数量和块头,以便做出战斗/逃跑的决定;还是椋鸟在空中时刻与邻伴维持适当的距离,以便保持队形;或者羊群循着水草丰茂的路线觅食……所有这一切活动,按伦敦大学神经学家卡尔·菲力斯顿的说法,都意味着在做数学。

54、数学可能就在我们喜欢的积木玩具中,也可能在我们美味的曲奇饼干里;

55、所以我推测,数字的起源和发展更多的是由于要用到它。而在对几何的起源上,自古以来许多科学家大致认为有两种可能,这也分别是古希腊时期的希罗多德和亚里士多德持有的两种相反观点。希罗多德认为,几何学起源于埃及,因为埃及人必须在每年的河流泛滥后重新测量土地,这种实际需要导致了几何的产生‘亚里士多德认为,由于埃及人存在着一个像神职人员一样的有闲阶级,才激励了几何学的探索研究。这两种是相反的观点,一方面可以认为几何起源于实际需要,一方面认为它起源于闲暇的宗教仪式。也有可能两者兼有吧!但我们能明确一点,不管是希罗多德还是亚里士多德,他们都低估了几何学产生的年代。对于几何学中的测量早在石器时代就已经有了,但也许正是“闲暇和宗教”与“实际需要”促使了几何学的系统发展。

56、在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:1.存在为知识服务的知识,纯数学就是一个最佳的例子:2.知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点。就整体来说,古希腊人企图创造两种“科学”的方法论,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它希腊作品的翻译中才表现出来。数学作为一种有效的方法论远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。“数学”一词是来自希腊语,它意味着某种“已学会或被理解的东西”或“已获得的知识”,甚至意味着“可获的东西”, “可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(E.Littre 也是当时杰出的古典学者),在他编辑的法语字典(1877年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元10世纪的拜占庭希腊字典“Suidas”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”一词。  “数学”一词从表示一般的知识到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专有化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专有化在柏拉图时代就完成了。而不知是什么原因辞典编辑或涉及名词专有化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专有化确实受到人们的注意。首先,亚里士多德提出, “数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前640--546年)在“纯”数学方面的成就是可信的,因为除了第欧根尼拉尔修(Diogenes Laertius)简短提到外,这一可信性还有一个较迟的而直接的数学来源,即来源于普罗克洛斯(Proclus)对欧几里得的评注:但这一可信性不是来源于亚里士多德,尽管他知道泰勒斯是一个“自然哲学家”;也不是来源于早期的希罗多德,尽管他知道塞利斯是一个政治、军事战术方面的“爱好者”,甚至还能预报日蚀。

57、西来的希腊文化和东来的印度文化都汇集到这里来了,阿拉伯人将两种文化理解消化,从而创造了独自的阿拉伯文化。 在公元750年后的一年,有一位印度的天文学家拜访了巴格达王宫。他带来了印度制作的天文表,并把它献给了当时的国王。

58、 亚里士多德把数学定义为“数量科学”,这个定义直到18世纪。随着数学各个领域上的探索亦越发深入,开始涉及与数量和量度无明确关系的群论和投影几何等抽象主题,数学是否是艺术或科学,至今没有被定义。

59、数学不仅是一种计算的技巧,也是一种工具,还是一种思维方法的应用和思维过程的展现。那些沉醉于数学的人为人类创造了一个纯粹的思维世界,无论是杰出的天才,还是默默无闻的耕耘者,都是一个时代的楷模。

60、  对甲骨文的研究表明,商朝人已经会做自然数的加、减法和简单乘法了,遗憾的是不知道他们的具体算法,因为甲骨文记录的只是运算结果,而没有运算过程.

61、数学和物理之间这种普遍存在的联系,使我们想起几个世纪前伽利略说过的一句话“数学是大自然的语言”。对今天从事自然科学研究的人来说,数学几乎是一门必备的工具。甚至长期抵制数学的生物学,也在慢慢地屈服:人们已经见证了数学在基因组学或神经科学中的广泛应用。比如,DNA双螺旋结构的发现就与一个叫“傅里叶分析”的数学工具分不开。神经生物学则越来越依赖拓扑学、图论等数学学科。

62、但也有人争辩说,这些动物并没有掌握数的象征意义。相反,它们只是在经过上千次的训练之后,能通过联想来学习数。这和我们训练动物去做它们在野外做不到的事情没什么不同。比如在自然状态下,让大象戴着滑稽帽子一条腿站在凳上是不可想象的,而经过训练再做这类事情,就没什么可稀奇的了。

63、同样地,人类从远古走来,最开始是猿,从猿进化到人。因此,人在生存发展的过程中,必然要产生基本的数量需求和位置需求。比如,人生存好要吃肉,吃肉就要捕猎,可捕猎是有风险,当然谁也不愿意受伤。那么,就要思考这一个月需要吃几头猪,并且不用冒更大的风险捕猎更多的猪。而这对应着基本的数量需求。另外,我们要有住的地方,不能直接挨着狮群住,也不能离水源太远,还要考虑地势高低,不能一下雨,住的地方就成了水坑。这就对应着基本的位置需求。这就产生了基本的数量需求和位置需求。

64、在科技引领创新发展的今天,原创科普已经成为传承文化、沟通世界的重要载体。丛书将理性思维和文学艺术完美融合,用极其通俗易读的语言把读者带入科学的世界,是一套难得的原创科普佳作。我们相信并且期待,未来的科学大师即将诞生于年轻一代读者中!

65、 有人说,“数学的尽头是哲学,哲学的尽头是神学”,数学的逻辑与概念,为人类提供了通往终极奥义的方法。华罗庚说,“新的数学方法和概念,常常比解决数学问题本身更重要。”

66、后来人们又逐渐发现复数的理论体系在解决很多现实问题是很好的工具。在流体力学中,比如对于一条河流,中间有一根木头挡住了一部分水流,那么对于木头两侧的水流,虽然距离很近,甚至可以忽略,但是两边水流的速率、方向却相差非常大,必须要绕过木头才能建立起相应的关系。把这个现象用一个模型来表达(如下图),

67、丹顶鹤迁徙总是成群结队,而且排成“人”字形。这“人”字形的角度永远是110°左右,如果计算更精确些,“人”字夹角的一半,即每边与丹顶鹤群前进方向的夹角为54°44′08″。按照这个队形,使得队伍中的丹顶鹤最省力。

68、  所谓内插法,是已知若干自变量所对应的函数值,求这些自变量之间其他自变量对应的函数值的一种方法,古代常用来推算日、月、五星(即金星、木星、水星、火星、土星)的行度,为制订历法服务.内插分两种---等间距内插和不等间距内插.等间距指的是自变量的间距相等.设自变量x,等间距h,函数关系为f,若函数值之差 f(x+nh)-f(x+(n-1)h)(即一次差,其中n=…)为一不等于0的常数,则用一次内插法;若这些函数值之差的差(即二次差)为一不等于0的常数,则用二次内插法,依此类推.用现代数学的观点来看,n次内插法反映的是n次函数关系.

69、不同的民族都需要数字,需用数字来表达,在现实生活中常会涉及数字之间的数量关系。比如军营里面现有一个营的兵力,然后又有人来参军,又来了一个营零一个连的兵力,那么我们一共有多少兵力?这样的数量关系怎么描述呢?再比如现在军营里面有三个营的兵力,需要分出去两个营给别人,怎么分?于是现实生活中就产生了加法和减法。涉及要把一些东西合到一起测量总数的时候就产生了加法,涉及要从一个总的数字当中分一些东西出去,就产生了减法。在人类最早的文字记载中,加减运算是最早掌握的两种数学运算。我国古代比较注重利用工具来做计算,用算筹或者算盘来做加减法,记录时用的是文字表达。在现实当中因为有需求,才产生了各种各样的运算。从根本上说,人类一般是不干傻事的,总是产生对人类有用的东西。

70、关于人类是否天生具有“数觉”的争论,让持肯定意见的人经常转向从动物方面寻求支持。如果我们的远亲能表现出一定的数学能力,那这就意味着我们自己对数的感觉也必定先于文化的发展。

71、印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。

72、既然是数学模型,当然就要对现实做些简化,不可能面面俱到。尤其对于生命来说,当危险临近时,迅速行动才是主要的,准确倒退居次要。譬如上述“逃跑/战斗”的模型中,考虑那三项因素大致就差不多了,至于“狮子毛色如何”,“天空会不会下雨”等因素,都可以不考虑。考虑因素太多,决策就慢下来,进而影响行动速度。

73、  简单几何图形的出现,是数学起源的另一标志.半坡出土的陶器上,有圆、三角形、长方形、菱形等各种几何图形.圆柱形陶纺轮的烧制,表明人们有了圆柱的观念;而造型精致的空心陶球,则说明人们已掌握一些关于球的知识.这些都是萌芽状态中的几何.我们从某些陶器的图案中,可以推测菱形产生的有趣过程,它体现了由具体到抽象的认识规律(图2).

74、  《周髀算经》中记载着商高的“用矩之道”:“平矩以正绳,偃矩以望高,覆矩以测深,卧矩以知远,环矩以为圆,合矩以为方.”头一句是说用矩的一边测量一线是否直线,第六句是用矩画圆、画方的方法.第四句是相似直角三角形的应用:把矩的一边垂直向上去测量高度,把矩的一边垂直向下测量深度,把矩平放去测量地面上两点间距离.下面以第二句为例说明测量方法:设AB为矩的一边,BC是矩的另一边由顶点到视线的一段,AD为图8所示之可测距离,DE

75、这是一套由中国学者精心编著的有水准的科普读物,涵盖了最基本的七大科学门类,采撷了从古代到近现代的精彩科学史片段,讲述了代表性人物及重要发现和发明,还融合了现代科学前沿知识,用巧妙的故事形式、浅显生动的语言娓娓道来,读之开阔视野,读之启迪思维。

76、这些发现表明,动物确实有一种接近“数觉”的本能。换句话说,这种本能为人类和许多其他动物共同拥有。

77、既然机器人是通过“建模”与外部世界互动的,那么一个合理的推测是:生物在某种程度上也是通过“建模”跟世界打交道的。

上一篇:教师节爱心贺卡又简单漂亮精品好句48句

下一篇:没有了